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SFSU - ENGR 301 – ELECTRONICS LAB 

 

LAB #1:  TIME AND FREQUENCY RESPONSES OF SERIES RLC CIRCUITS 
 

 

Objective: 
To investigate the step, impulse, and frequency responses of series RLC circuits.  To compare 

experimental results with theory and LTspice simulations, and to account for possible differences.  To 

gain familiarity with Bode plots.   

 

Components: 

1  3.9-mH inductor, 1  10-nF capacitor, 1  1 k potentiometer, and resistors: 1  10 , 1  39 , 1  

1.0 k, and 1  2.0 k, 1  3.9 k, (all 5%, ¼ W). 

 

Instrumentation:   
An RLC meter, a waveform generator (square-wave, pulse, and sine-wave), and a dual-trace oscilloscope.   

 

References:   
1.  Franco, Sergio Electric Circuits Fundamentals, Oxford University Press, 1995 (Chs. 9 and 14). 

2.  Roberts, Gordon W., and Sedra, Adel S., SPICE, 2nd Ed.; Oxford University Press, 1997. 

 

PART I – THEORETICAL BACKGROUND 
 

RLC circuits are classical examples of second-order systems.  Together with their mass-spring-

dashpot mechanical analog, they are used to illustrate fundamental systems-theory concepts and 

techniques, such as Laplace-transform techniques and resonance. 
 

The current response of the series RLC circuit of Fig. 1 is found via Laplace-transform techniques 

as I(s) = Y(s)V(s), where I(s) and V(s) are the Laplace transforms of i(t) and v(t), s is the complex 

frequency, and Y(s) is the complex admittance, that is, the reciprocal of the complex impedance Z(s), 
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This function is usually expressed in the standardized form 
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where 

Fig.1 – Series RLC circuit. 
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Here, 0 is the undamped natural frequency, in rad/s, and  is the damping ratio, dimensionless. The 

values of these parameters are set by those of the components making up the circuit. 
 

The values of s for which the denominator of Y(s) becomes zero are called the poles of Y(s), and 

therefore, the zeros of Z(s).  They are easily found to be 
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We have the following significant cases: 
 

• For  > 1, the poles are real and distinct, and the system is said to be overdamped. 

• For  = 1, the poles are real and coincident, and the system is said to be critically damped. 

• For 0 <  < 1, the poles are complex conjugate, or ),1( 2
02,1   js where j2 = -1.  The 

system is now said to be underdamped. 
 

In each of the above cases the poles lie in the left-half of the complex plane s.  For  = 0, the poles lie 

right on the imaginary axis, and the system is said to be undamped.  It is apparent that varying R while 

keeping L and C constant will move the poles around in the complex plane.  
 

Systems theory indicates that the response i(t) to a given excitation v(t) can be found as i(t) =  

L-1{I(s)} = L-1{Y(s)V(s)}, where L-1 indicates inverse Laplace transformation.  The responses of greatest 

practical interest in engineering are the impulse, the step, and the ac or frequency responses.  The current 

response i(t) is readily visualized with the oscilloscope by observing the voltage vR(t) across the resistance 

R; then, i(t) = vR(t) /R.  Of great interest are also the capacitance and inductance responses vC(t) and vL(t).   

 

 

The Transient Response: 

Figure 3 shows the step or transient response across C for three different values of .  It can be proved 

that for 0 <  < 1, this response is a damped sinusoid with the frequency  
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Fig. 2 – PSpice circuit to display  

the step response across C. 
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called the damped frequency.  We also observe the presence of overshoot, defined as  
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where vO() is the value of vO in the limit t  .  The overshoot is related to  as 
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21/
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e          (5) 

 

The smaller the value of , the higher the overshoot and the longer it takes for the oscillation to die out.  

In the limit   0 we have a sustained oscillation with undamped natural frequency 0.  If  is gradually 

increased from zero, the oscillation will die out more and more rapidly until the point is reached where 

there will be no more oscillation.  This point corresponds to critical damping, or  = 1.  For  > 1, not 

only is there no oscillation, but the system takes even a longer time to reach its steady state. 

 

Frequency Response: 

Systems theory indicates that the frequency response of a circuit is found by letting s  j in its transfer 

function.  In this case it is also more common to work with the parameter Q = 1/(2), after which our 

expression above becomes 
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and 

Fig. 3 – Step or transient response across C for different values of . 
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The function HBP(j) is called the standard second-order band-pass function.  
 

To investigate the frequency response of our circuit, we apply an ac voltage of the type  

 

vi(t) = Vim cos t         (8a) 

 

and we observe the response vo(t) = Ri(t) across the resistor, which is an ac voltage of the type  

 

vo(t) = cos( )omV t           (8b) 

 

Here, Vim and Vom are the peak amplitudes (in V),  is the angular frequency (in rad/s), and   is the phase 

angle (in degrees).  The parameters of the response are related to those of the applied voltage as   

 

Vom = HBP  Vim  = HBP       (9) 

 

where HBP and nd HBP are, respectively, the magnitude and phase of HBP.   
 

The LTspice circuit of Fig. 4 is used to visualize the frequency response across R for the case 0 

= 1 rad/s.  Again, you can simulate this circuit on your own by downloading its files from the Web, as 

mentioned earlier.  Figure 5 shows the logarithmic plots of magnitude and phase, also called Bode plots, 

for three different values of Q.  Each magnitude curve peaks at 0 dB for  = 0, this being the reason why 

0 is also called the resonance frequency.  Moreover, each curve drops to -3 dB at two frequencies L and  

H such that  
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It is readily seen that these frequencies satisfy the condition L  H   = 0
2, and that phase is 450 at 

these frequencies.  Moreover,  the half-power bandwidth, defined as BW = H – L, is such that  
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Q 0
           (11) 

 

It is apparent that the narrower the BW for a given 0, the higher the value of Q.  Consequently, Q  

provides a measure of the degree of selectivity of a filter such as ours.  
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Fig.4 – PSpice circuit to display the 

frequency response across R. 
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 PART II – EXPERIMENTAL PART 
 

To lower the output resistance Rs of the function generator (usually an ill-defined parameter on 

the order of 50 ) to a smaller and more predictable value, we interpose a voltage-divider adaptor as 

shown in Fig. 6.  Note that because of the internal ground connection of the oscilloscope, we must arrange 

the elements so that the element across which we wish to observe the response is always located at the 

site denoted as X3.  
 

By Thevenin’s theorem, the circuit reduces to the equivalent of Fig. 7 for the case in which we  

observe the response across the capacitor.  Here, vOC and Req are the parameters of the equivalent source, 

RL is the winding resistance of the coil, and Rp is a variable resistance that we adjust to achieve specific  

values of  (or Q) for our circuit.  This variable resistance is implemented via a potentiometer with the 

wiper connected to either one of its remaining terminals.  If you need a value of Rp greater than the 

potentiometer’s rating, use a suitable resistance in series.  The expressions for  and Q derived above still  
 

 

          Fig. 5 – Bode plots for different values of Q 

Fig. 6 – Experimental setup. 
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hold, provided we use 

 

R = Req + RL + Rp         (11) 

 

In our case, Req   (50 + 39)//10  9 , RL is measured, and is Rp is adjusted to specific values found via 

calculation, as we shall see shortly.   

 

Initial Measurements and Calculations: 
Henceforth, steps shall be identified by letters as follows: C for calculations, M for measurements, S for 

SPICE simulation. 

 

M1: Using an RLC meter from the stockroom, measure and record the values of C (10nF), L(3.9mH), and 

RL (the resistance of the coil).  By how much do L and C differ from their nominal values? 

 

C2: Calculate the undamped natural frequency 0 1/(2 )f LC . Please explain what the undamped 

natural frequency is. 

 

Step Response: 

C3:  Calculate the three values of R using equation (2) , and hence of Rp = R – Req – RL, that result in  = 

5,  = 1, and  = 0.2, with the values of L and C measured in Step M1.  For the case  = 0.2, compute also 

the damped frequency fd and overshoot OS(%) via Eqs. (4) and (5). Please explain what damped 

frequency and overshoot is. In other words, explain Eqs (4) and (5). 

 

C4:  Calculate the values of the poles for the three specified values of , and show their complex-plane 

locations.  Be neat and precise by keeping the Real axis with unit of (0) . For the complex-plane 

locations, please draw it in MATLAB or equivalent, or paste hand-written image of your work. 

 

S5:  Using LTspice, along with the component values of Steps M1 and C3, plot the response of the circuit  

of Fig. 7 to a 1-V step for the three specified values of  .  For the case  = 0.2, use the cursor facility of  

LTspice to estimate the overshoot OS(%) as well as the period Td of the decaying oscillation and, hence, 

the damped frequency fd = 1/Td.  Compare with the predicted values in Step C3. Are they close?     

 

M6:  Assemble the circuit of Fig. 6, with the coil as X1, the potentiometer as X2, and the capacitor as X3,  

 

so that its equivalent is as in Fig. 7.  Keeping in mind that Req = 9 , adjust Rp for  = 1.  Then, while 

monitoring v1 with Ch.1 of the oscilloscope set on DC, adjust the waveform generator so that v1 is a 

     Fig. 7 – Equivalent circuit of Fig. 6 for the case in which X3 is the capacitor (Req = 9 ) 
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square wave alternating between 0 V and 1 V with a frequency of about f0/10, where f0 is the undamped 

frequency of Step C2 (make sure you know where the 0-V baseline is on the screen!).    

Now, observe and record the circuit’s response by monitoring v2 with Ch. 2 of the oscilloscope 

set on DC.  Finally, compare with the response predicted via LTspice in Step S5, and account for any 

differences. 

 Note:  In this and the subsequent steps, if the pot is not sufficient to achieve the desired resistance 

value, use suitable combinations of resistances in series with the pot.  For instance, connecting the 1-k 

pot in series with a 3 k ordinary resistor will allow you to span the range of 3 k to 4 k. 

 

M7:  Repeat step M6, but with Rp adjusted for  = 5.  Provide a physical justification for why the 

response is now so sluggish.  Compare the measurement with the simulation results. 

 

M8:  Repeat step M6, but with Rp adjusted for  = 0.2.  Also, from the oscilloscope trace, estimate fd and 

OS(%) in a manner similar to Step S5, compare with those predicted in Step C3, and comment.  Finally, 

provide a physical justification for why the response is now oscillatory. Compare the measurement with 

the simulation results. 

 

Impulse Response: 

Leaving the potentiometer setting as in Step M8 ( = 0.2), interchange Rp and C so that the circuit  

becomes as in Fig. 8.  Then, change the waveform generator settings so that v1 is now a pulse train 

consisting of pulses each alternating between 0 V and 1 V with a pulse-width of about 0.1/f0, where f0 is 

the undamped frequency calculated in Step C2.  A pulse this narrow will provide a good approximation to 

the impulse function for our circuit.  Moreover, to be able to see a repetitive trace on the oscilloscope,  

adjust the waveform generator settings so that the above pulses repeat with a frequency of about 10/f0.   

 

M9:  While triggering the oscilloscope from v1, observe v2 with the other channel and record it (for best  

visualization, you may need to adjust the repetition frequency from the initial suggested value of 10/f0.) 

Next, measure the period Td of the damped oscillation, calculate 1/Td, and compare with fd of Step C3.  

Finally, justify the waveform for the response v2 using physical insight. 

 

Frequency Response: 
To investigate this type of response we still use the circuit of Fig. 8, except that we change the waveform 

generator settings so that v1 is now a sinusoidal signal with a constant peak amplitude of 1 V, 0-V DC, 

and variable frequency f.   

You can measure f by (a) reading the frequency setting on the waveform generator, or (b) by 

measuring the period T with the oscilloscope and then computing f = 1/T, or (c) by using a frequency 

meter from the stockroom.  It is up to each group to decide which method to pursue, and to justify your 

choice in the final report.  

 

C10:  Find the value of R , and, hence, of Rp, that results in Q = 5 (use Eq. 7) in the circuit of Fig. 8  

Then, using Eqs. (10) and (11), calculate fL, fH, and the bandwidth BW. Please explain what bandwidth 

BW is. 

 

S11:  Using LTspice, along with the component values of Steps M1 and C10, generate the Bode Plots of 

the circuit of Fig. 8.  Then, using the cursor facility of LTspice, estimate fL and fH, first as the -3-dB 

frequencies on the magnitude plot, then as the 45o frequencies on the phase plot.  Compare the resulting 

values of fL,  fH, and BW against those of Step C10, and account for possible differences. 

 

M12:  While monitoring v2 with the oscilloscope, vary the waveform generator’s frequency f until v2  
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reaches its maximum, and record the value of f.  This is the experimental value of f0. Compare with the 

calculated value of Step C2.  Do they agree within their respective uncertainties?  Account for possible 

differences!  Also, how does the maximum amplitude of v2 compare with the amplitude of v1?  Justify via 

suitable voltage-divider calculations! 

 

M13:  Vary the waveform generator’s frequency f until the amplitude of v2 is down to 70.7% of its 

maximum as found in Step M12.  There are two such frequencies, namely, fL and fH.  How do they 

compare with the calculated values of Step C10.  Do they agree within their respective uncertainties? 

 

M14:  Repeat Step M13, except that now we shall find fL and fH as the 45o frequencies.  For phase 

measurements, use Channel 1 and Channel 2 of the oscilloscope for input and output.  Which of the 

methods of estimating fL and fH do you think is the most and which the least dependable, and why? Please 

explain the method you used to find the phase measurements. 

 

M15:  Verify experimentally the following important properties: 

• For f << f0, increasing f by a factor of 10 increases amplitude also by a factor of 10, this being the 

reason why it is said that the slope of the magnitude curve is +20 dB/dec there.   

• For f >> f0, increasing f by a factor of 10 decreases amplitude also by a factor of 10, this being the 

reason why the slope of the magnitude curve is said to be -20 dB/dec there.   

 

M16:  Interchange Rp  and C so that we are back to the circuit of Fig. 7, to observe the response across C.  

Find the value of R that results in Q = 1/ 2  = 0.707, and hence adjust Rp accordingly.  Then, by suitably  

varying the waveform generator’s frequency f while leaving amplitude and DC offset unchanged, find 

experimentally the following:   

• The -3-dB frequency f-3dB  

• The low-frequency amplitude of v2 

• The amplitude of v2 at 10f-3dB and 100f-3dB  

 

S17:  Using LTspice, plot the magnitude response across C.  Then, compare with the values in M16. 

Fig. 8 – Circuit to investigate the impulse and frequency responses across Rp. 
 


