SFSU - ENGR 301 - ELECTRONICS LAB

LAB #5: MOSFET CHARACTERISTICS AND APPLICATIONS

Updated Dec. 30, 2003

Objective:

To characterize *n*-channel and *p*-channel enhancement MOSFETs. To investigate basic MOSFET amplifiers. To compare measured and simulated MOSFET circuits.

Components:

 $1 \times$ CD4007UB MOSFET Arrays, $2 \times 0.1 \mu$ F capacitors, $1 \times 100 \mu$ F capacitor, $1 \times 10 k\Omega$ potentiometer, and resistors: $1 \times 100 \Omega$, $2 \times 10 k\Omega$, and $1 \times 1 M\Omega$ (all 5%, ¹/₄ W).

Instrumentation:

A bench power supply, a waveform generator (sine/triangle wave), a digital multi-meter, and a dual-trace oscilloscope.

PART I – THEORETICAL BACKGROUND

Figure 1 shows the circuit symbols for the *n*-channel and the *p*-channel enhancement MOSFETS, the devices we are going to be using in this lab. The gate (G) of the MOSFET plays a similar role to the base (B) of the BJT. Similarly, the drain (D) can be likened to the collector (C), and the source (S) to the emitter (E). As in the case of BJTs, the current directions and voltage polarities of one device are opposite to those of the other. In fact, the *n*- and the *p*-channel devices are said to be complementary to each other, and when they are fabricated on the same substrate, the resulting technology is referred to as complementary MOS, or CMOS for short. Unlike the BJT, which requires a base current to go on, the FET has $i_G = 0$. Consequently, for FETs we have $i_S = i_D$.

MOSFETs possess a fourth terminal called the *body* (B), which is internally tied to the *substrate*. Though this terminal is not used on purpose, it must be properly biased to prevent unintentional effects. In the *n*-channel MOSFET the body forms a *pn* junction both with the source and the drain regions, with *B* acting as the *anode*. To avoid inadvertently turning on either of these junctions, we must at all times hold *B* at the *most negative voltage* (MNV). Likewise, in the *p*-channel MOSFET, *B* acts as the *cathode*, so it must be held at the *most positive voltage* (MPV). When physically possible, *B* is tied to *S*, and the above constraints are satisfied automatically. This will be the case with the devices of this lab.

n-channel Enhancement MOSFET

p-channel Enhancement MOSFET

Fig. 1 – Circuit symbols, current directions, and voltage polarities for the MOSFETs.

When an *n*-channel MOSFET (*n*MOSFET) is biased in the *pinchoff region*, also called *saturation region* or *active region*, and characterized by the conditions

$$v_{GS} \ge V_{tn} \tag{1a}$$

$$v_{DS} \ge v_{GS} - V_{tn} \tag{1b}$$

its *drain current* i_D depends on the applied *gate-source* voltage v_{GS} and the operating *drain-source* voltage v_{DS} as

$$i_{D} = \frac{k_{n}}{2} (v_{GS} - V_{in})^{2} (1 + \lambda_{n} v_{DS})$$
⁽²⁾

where

- k_n is a scale factor known as the *device transconductance parameter*, in A/V²
- V_{tn} , known as the *threshold voltage*, is the value of v_{GS} at which the MOSFET starts conducting
- λ_n , whose dimensions are V⁻¹, is called the *channel-length modulation parameter* (λ_n is the reciprocal of the *Early voltage* V_{An} of an *npn* BJT, or $\lambda_n = 1/V_{An}$).

For a low-power *n*MOSFET, k_n is typically in the range of $10^2 \mu A/V^2$, V_{tn} is in the range of $10^0 V$, and λ_n is on the order of $10^{-2} V^{-1}$. If $V_{tn} > 0$, the *n*MOSFET is said to be of the *enhancement type*; if $V_{tn} < 0$, it is said to be of the *depletion type*. Moreover, the extrapolated value of i_D in the limit $v_{DS} \rightarrow 0$ is $i_D = (k_n/2)(v_{GS} - V_{tn})^2$.

The *device transconductance parameter* k_n depends on device geometry as

$$k_n = k_n' \left(\frac{W_n}{L_n}\right) \tag{3}$$

where

- k'_n , also in A/V², is called the *process transconductance parameter*;
- W_n and L_n , both in μ m, are the channel width and channel length of the nMOSFET

Similar considerations hold for the *p*-channel MOSFET (*p*MOSFET), provided we *reverse* all *current directions* and *voltage polarities*. Thus, the active-region conditions of Eq. (1) become, for a *p*MOSFET,

$$v_{SG} \ge -V_{tp} \tag{4a}$$

$$v_{SD} \ge v_{SG} + V_{tp} \tag{4b}$$

Similarly, Eq. (2) is rephrased as

$$i_D = \frac{k_p}{2} \left(v_{SG} + V_{lp} \right)^2 \left(1 + \lambda_p v_{SD} \right)$$
(5)

where

$$k_p = k_p^{\dagger} \frac{W_p}{L_p} \tag{6}$$

© 2002 Sergio Franco

Fig. 2 – PSpice circuit to plot the *i*-*v* characteristic of a homebrew *n*MOSFET operated in the so called *diode mode* (*G* and *D* tied together, and *B* and *S* tied together.).

is again the *device transconductance* parameter, and k'_p the *process transconductance* parameter, both in A/V². , and If $V_{tp} < 0$, the *p*MOSFET is said to be of the *enhancement type*; if $V_{tp} > 0$, it is said to be of the *depletion type*. The extrapolated value of i_D in the limit $v_{SD} \rightarrow 0$ is $i_D = (k_p/2)(v_{SG} + V_{tp})^2$.

MOSFET circuits are readily simulated via PSpice. In the PSpice circuit of Fig. 2 we are using a homebrew *n*MOSFET called 301nFET to display the i_D versus v_{GS} characteristic in the so called *diode mode* of operation (*G* and *D* tied together). This device has been created by renaming and suitably editing the *PSpice Model* of one of the MOSFETs available in the PSpice Library. This has been done first by clicking the device to select it, then by clicking **Edit** \rightarrow **PSpice Model** to change the values of its parameters. The result is the following model statement:

.model 301nMOSFET NMOS(W=10u L=5u kp=50u Vto=1.5 lambda=0.05)

The characteristic, expressed by Eq. (2) and shown in Fig. 3, is reminiscent of a diode curve.

Fig. 3 – The *i*-*v* characteristic of the diode-connected *n*MOSFET of Fig. 2.

The slope of the $i_D - v_{GS}$ curve at a particular *operating point* $Q(I_D, V_{GS})$ is denoted as g_m , and is called the *transconductance*, in A/V or also in $1/\Omega$. (Beware not to confuse g_m with k or k', whose units are A/V²) Upon differentiating Eq. (2), we end up with three expressions,

$$g_m = k_n (V_{GS} - V_m) = \sqrt{2k_n I_D} = \frac{I_D}{0.5(V_{GS} - V_m)}$$
(7)

Likewise, a *p*MOSFET has $g_m = k_p (V_{GS} + V_{tp}) = \sqrt{2k_p I_D}$. Compared to a BJT, for which $g_m = I_C/V_T = I_C/(26 \text{ mV})$, an *n*MOSFET has $g_m = I_D/[0.5(V_{GS} - V_m)]$, where usually $0.5(V_{GS} - V_m) >> 26 \text{ mV}$. This explains why MOSFETs in general have notoriously *much lower* g_m s than their BJT counterparts. Indeed, our homebrew *n*MOSFET, whose k_n is typical of small-geometry devices, has $g_m(I_D = 1 \text{ mA}) = 0.632 \text{ mA/V} = 1/(1580 \Omega)$. Conversely, a BJT has $g_m(I_C = 1 \text{ mA}) = 38 \text{ mA/V} = 1/(26 \Omega)$.

It is interesting to note that if we plot the *i*-v characteristic of a diode-connected MOSFET on a *quadratic*-versus-*linear* system of axes, the resulting curve becomes a *straight line*. Specifically, if we plot Eq. (2) on an x-y plane with

$$x = v_{GS} (= v_{DS}) \tag{8a}$$

and

$$y = \sqrt{\frac{i_D}{1 + \lambda_n x}} \tag{8b}$$

then the characteristic becomes $y = \sqrt{k_n/2}(x - V_m)$, that is, a straight line with *slope dy/dx* = $\sqrt{k_n/2}$ and *x*-axis *intercept* at V_m . This is illustrated in Fig. 4 for our homebrew *n*MOSFET. We shall find this feature quite convenient from an experimental standpoint.

An insightful alternative for illustrating *n*MOSFET operation is by plotting i_D versus v_{DS} for different values of v_{GS} . The PSpice circuit of Fig. 5 generates such a plot for incremental steps in V_{GS} of 0.5 V each. The resulting family of curves, shown in Fig. 6, reveals *three regions* of operation:

Fig. 4 – Linearization of the *i*-*v* curve of a diode-connected *n*MOSFET.

Fig. 5 - PSpice circuit to plot i_D versus v_{DS} for different values of V_{GS} .

- For $v_{GS} \le V_{tn}$ (= 1.5 V) we get $i_D = 0$, indicating that the *n*MOSFET is operating in the *cutoff* (CO) *region*. In this region both the *GS* and *DS* ports act as *open circuits*.
- For $v_{GS} > V_{tn}$, the *n*MOSFET is *on*. The region corresponding to $v_{DS} > V_{GS} V_{tn}$ is called the *pinchoff* (PO), or *saturation*, or *active* region. As we know, in this region Eq. (2) holds, which we repeat here

$$i_D = \frac{k_n}{2} (v_{GS} - V_{tn})^2 (1 + \lambda_n v_{DS}) \qquad \text{for } v_{DS} > V_{GS} - V_{tn}$$
(9)

In the PO region, the i_D versus v_{DS} curves are almost *horizontal*, indicating *current-source* behavior by the *DS* port there. Moreover, if we project the PO curves to the left, they all converge to the *same point* on the v_{DS} axis. This point is located at $-1/\lambda_n V$. Note that when operated in the diode mode, the MOSFET has $v_{DS} = v_{GS}$, which obviously satisfies $v_{DS} > V_{GS} - V_m$, indicating PO operation when the device is on.

Fig. 6 – Illustrating the *three* regions of operation of an *n*MOSFET.

• The region corresponding to $v_{DS} < V_{GS} - V_t$ is called the *ohmic* (Ω), or *triode* region. In this region the channel behaves as a nonlinear resistor, and i_D takes on the form

$$i_{D} = k_{n} \left[\left(v_{GS} - V_{m} \right) v_{DS} - \frac{v_{DS}^{2}}{2} \right] \left(1 + \lambda_{n} v_{DS} \right) \qquad \text{for } v_{DS} < V_{GS} - V_{tn}$$
(10)

For small values of v_{DS} , we can ignore $v_{DS}^2/2$ as well as $\lambda_n v_{DS}$ (recall that $\lambda_n \ll 1$), and approximate

$$i_D \cong \frac{1}{r_{DS}} v_{DS} \tag{11a}$$

where

$$r_{DS} = \frac{1}{k_n (V_{GS} - V_{tn})}$$
(11b)

represents the *channel resistance* in the limit $v_{DS} \rightarrow 0$. Such a resistance is controlled by V_{GS} , indicating *voltage-controlled resistance* behavior near the origin. As shown in Fig. 6, the borderline between the PO and the Ω regions is a locus of points forming a *parabola*.

As we know, it is convenient to express a *total signal* such as the drain current i_D as the sum

$$i_D = I_D + i_d \tag{12}$$

where

- *I_D* is the *DC component*, also known as *large signal*
- *i_d* is the *AC component*, also known as *small signal*

We work with DC signals when dealing with transistor *biasing*, and we work with AC signals when dealing with *amplification* to find AC *gain* as well as in *input* and *output resistances*. To signify how a FET relates DC voltages and currents (upper-case symbols with upper-case subscripts) we use *large signal models*, while to signify how it relates AC voltages and currents (lower-case symbols with lower-case subscripts) we use the *small-signal model*.

Large-Signal MOSFET Models:

With regard to the two regions of interest to us in this laboratory, namely the CO and the PO regions, we make the following observations:

Fig. 7 – Large-signal MOSFET models

In the *CO region* a MOSFET draws only leakage currents, which for practical purposes can be neglected. So, both the *GS* and the *DS* ports act essentially as *open circuits*.

• In the *PO region*, the *GS* port still acts as an open circuit, but the *DS* port now acts as a *dependent current source*, which in the case of the *n*MOSFET takes on the form $I_D \cong (k_n/2)(V_{GS} - V_m)^2$, where we are arbitrarily assuming $\lambda_n = 0$ to simplify our DC calculations. Similar considerations hold for the *p*MOSFET, and the two models are shown in Fig. 7.

Small-Signal MOSFET Model:

When used as an *amplifier*, a MOSFET is operated in the *PO region* where we model its way of relating voltage and current *variations* via the *small signal model*. Due to its quadratic characteristic, the BJT is a nonlinear device. However, if we stipulate to keep its *signal variations sufficiently small* (hence the designation *small-signal*), then the model can be kept linear – albeit approximate. For an *n*MOSFET, the small signal constraint is

$$v_{gs} << 2(V_{GS} - V_m)$$
 (13)

while for a *p*MOSFET it is $v_{gs} \ll 2(V_{SG} + V_{tp})$. Note that the large-signal models are different for the two MOSFET types because their voltage polarities and current directions, are *opposite*. However, the small-signal model is the *same* for the two types because it involves only *variations*. This common model is shown in Fig. 8. Its parameters depend on the *bias current* I_D as

$$g_m = \sqrt{2kI_D} \qquad r_o = \frac{1}{\lambda I_D} \tag{14}$$

At the same bias current, the r_o of a MOSFET is typically on the same order of magnitude as that of a BJT. However, the g_m of a MOSFET is typically one to two orders of magnitude *smaller*. This is due to the fact that the *i*-*v* characteristic of the MOSFET is *quadratic*, while that of the BJTis *exponential* and thus generally much steeper. For the same reason, the MOSFET is not as pronouncedly nonlinear as the BJT, so the small-signal constraint of Eq. (13) is generally far more relaxed than for a BJT, for which $v_{be} \ll 52 \text{ mV}$.

The relationships presented in Lab #4 for the generalized ac equivalent of the BJT hold also for the MOSFET, the only difference being that the MOSFET has $i_g = 0$ and generally much lower g_m under

Fig. 8 – Small-signal MOSFET model, valid for $v_{gs} \ll 2(V_{GS} - V_t)$.

Fig. 9 – Generalized AC equivalent.

similar operating conditions. With reference to Fig. 9, the relationships are as follows:

• The *input resistance* seen looking into the *gate* is

$$R_g = \infty \tag{15}$$

indicating that we can bias the gate of a MOSFET with resistances in the M Ω range, if needed.

• The *output resistance* seen looking into the *source* is

$$R_s = \frac{1}{g_m} \tag{16}$$

which is generally low, but not as low as in the case of a BJT operating under similar conditions. For a low-power MOSFET operating at $I_D = 1$ mA, R_s is typically in the k Ω range. As we know, a BJT has $r_e(1 \text{ mA}) = 26 \Omega$.

• The *output resistance* seen looking into the *drain* is

$$R_d = r_o \left(1 + g_m R_s \right) \tag{17}$$

indicating that the presence of R_S effectively raises the drain resistance from r_o to R_d .

• The change in drain current i_d stemming from a small-signal change in the gate voltage v_g is expressed as $i_d = G_m v_g$, and we have

$$G_m = \frac{g_m}{1 + g_m R_s} \tag{18}$$

indicating that the presence of the source resistance R_S introduces source degeneration.

We conclude by illustrating the use of PSpice to simulate a *common-source* (CS) *amplifier*. You can simulate this circuit on your own by downloading its appropriate files from the Web. To this end, go to http://online.sfsu.edu/~sfranco/CoursesAndLabs/Labs/301Labs.html, and once there, click on PSpice Examples. Then, follow the instructions contained in the Readme file. Our PSpice circuit is shown in Fig. 10*a*. After directing PSpice to perform the *Bias Point Analysis*, we obtain the state of the

Fig. 10 – Common-source amplifier and its DC voltages

labeled schematic of Fig. 10b. Moreover, after directing PSpice to perform a one-point AC Analysis at f = 10 kHz, we find that the *small-signal gain* of the circuit is $A_v = v_o/v_i = -2.55$ V/V. You will find it quite instructive to confirm the above data (both bias and AC) via hand calculations!

Part II – Experimental Part

We shall perform our experiments using the CD4007UB MOSFET Array. This array consists of three *n*MOSFETs and three *p*MOSFETs, all of the enhancement type, interconnected in the manner depicted in Fig. 11. Recall that the body of the *n*MOSFETs (pin 7) must always be held at the *most negative voltage* (MNV) in the circuit; while the body of the *p*MOSFETs (pin 14) must always be held at the *most positive voltage* (MPV) in the circuit. Failure to respect these constraints may invalidate all measurements taken.

The CD4007 is a delicate device. To avoid damaging it, make sure that you always *turn power* off before making any circuit changes, and that before reapplying power, each lab partner performs a *separate check* that the circuit has been wired correctly. Also, refer to the Appendix for useful tips on

Fig. 11 – The CD4007 MOSFET Array.

how to wire proto-board circuits. The hand calculations and PSpice simulations that you will perform in this and the following lab rely on the measurements taken for a *particular CD4007 sample*, so if you are careless and end up damaging it, you'll have to perform each measurement all over again!

You are urged to compare the data you are measuring on your *particular* sample against those reported in the data sheets, which are *typical* in that they were obtained by averaging over a large number of samples. To download the data sheets from the Web, go to <u>http://www.google.com</u> and search for "CD4007UB" or variants thereof.

MOSFET Characterization:

MC1: We use the circuits of Fig. 12 to find λ_n and λ_p . Mark one of the CD4007 ICs (the other is a spare). Turning first to the *n*MOSFET, assemble the circuit of Fig. 12*a* with power off (for R_D use 2 × 10 k Ω resistors in parallel). Using your multi-meter as a *digital current meter* (DCM), insert it in series between R_D and the drain D, as shown. Apply power and adjust the potentiometer for $I_D = 1$ mA. With reference to Fig. 13, this will bias M_1 at the operating point $Q(I_D, V_{DS}) = Q(1 \text{ mA}, 5 \text{ V})$. Now short out R_D with a wire (that is, close *SW*) to change the operating point from Q to Q' with $\Delta V_{DS} = 5$ V, and then measure the corresponding change ΔI_D . Expect the latter to be small, so use as many digits as your ammeter will allow. Finally, find $r_o = \Delta V_{DS}/\Delta I_D$ and $\lambda_n = 1/(r_o I_D - V_{DS})$. Are your values typical?

MC2: Repeat Step MC1 for the *p*MOSFET of Fig. 12*b*, except that you now find your parameters as $r_o = \Delta V_{SD}/\Delta I_D$, and $\lambda_p = 1/(r_o I_D - V_{SD})$. Again, are your values typical? How do their magnitudes compare with those of the *n*MOSFET of Step MC1?

M3: We use the circuits of Fig. 14 to find k_n and V_{tn} , and k_p and V_{tp} . Turning first to the *n*MOSFET, assemble the circuit of Fig. 14*a* with the DCM in series with the drain *D*. Obtain *v* from one of your variable power supplies, and measure and record *i* for v = 0 V, 1 V, 2 V, 3 V, 4 V, and 5 V.

Fig. 13 – Graphical illustration for finding r_o and hence λ_n and λ_p .

C4: Consider the data of Step M3 for which i > 0, and plot them on an *x*-*y* graph, with x = v and $y = \sqrt{i/(1 + \lambda_n x)}$ (use the value of λ_n found in Step MC1.) Hence, find the *best fit straight line*, determine its slope dy/dx, and obtain $k_n = 2(dy/dx)^2$. Moreover, obtain V_m as the value of *x* where your line intercepts the *x*-axis. Are your values typical?

M5: Repeat Step M3 for the *p*MOSFET of Fig. 14*b*.

C6: Consider the data of Step M5 for which i > 0, and plot them on an *x*-*y* graph, with x = v and $y = \sqrt{i/(1 + \lambda_p x)}$ (use the value of λ_p found in Step MC2.) Hence, find the *best fit straight line*, determine its slope dy/dx, and obtain $k_p = 2(dy/dx)^2$. Moreover, obtain V_{tp} as the *negative* of the value of *x* where your line intercepts the *x*-axis. Are your values typical? How do they compare with those of the *n*MOSFET?

Fig. 14 – Test circuits to find k_n , V_{tn} , k_p , and V_{tp} .

Fig. 15 – *Common-source* (CS) amplifier.

Common-Source Amplifier:

C7: Using the large-signal *n*MOSFET model with the parameters just measured, predict the DC voltages V_G , V_D , and V_S at the gate, drain, and source terminals of the *common-source* amplifier of Fig. 15. Hence, find the DC drain current I_D , and predict the value of the small-signal gain $A_v = v_o/v_i$, which in this case is

 $A_v = -g_m(r_o//R_D) \tag{19}$

with g_m given in Eq. (14).

M8: With power off, assemble the circuit of Fig. 15, but without connecting the waveform generator yet. Apply power, and use your DVM to measure the DC voltages V_G , V_D , and V_S . Next, connect the waveform generator, and while monitoring v_i with Ch.1 of the oscilloscope, adjust the generator so that v_i is a 10-kHz *sine-wave* with 0-V DC and 1-V *peak-to-peak* amplitude. Finally, use Ch. 2 (set on AC) to measure the *peak-to-peak amplitude* of v_o , and then find the experimental gain $A_v = v_o/v_i$ of your amplifier.

S9: Simulate the circuit of Step M8 via PSpice (DC as well as AC analysis). For a realistic simulation you need to create a PSpice model for your specific *n*MOSFET sample, using the above-measured values of k_n , V_m , and λ_n . To this end, when in PSpice, click the device to select it, then click **Edit** \rightarrow **PSpice Model** to change the values of its parameters to those found experimentally.

Note: From the above measurements you have no way to know the values of W_n and L_n . What you can do is to arbitrarily assume $W_n = L_n$ (say, 5- µm each), and then set the model parameter "Kp" to the value you have found for k_n . By this simple trick, PSpice will end up using the correct value for k_n .

C10: Compare the *predicted* values of Step C7 with the *measured* ones of Step M8 and the *simulated* ones of Step S9. Account for possible discrepancies.

M11: Returning to the circuit of Fig. 15, switch Ch. 2 to the DC mode (make sure you know where your 0-V baseline is on the screen!), change the waveform generator from sine-wave to *triangle-wave*, and increase its amplitude until v_o distorts both at the top and at the bottom. Justify the two types of distortion in terms of transistor operation.

Fig. 16 - *Common-drain* (CD) amplifier.

Common-Drain Amplifier:

C12: Assuming v_i has a DC value of 0 V in Fig. 16, use the large-signal model to find the DC drain current I_D . Hence, predict the value of the small-signal gain $A_v = v_o/v_s$, which in this case is

$$A_{v} = \frac{1}{1 + \frac{1}{g_{m}(R_{s} / / r_{o})}}$$
(20)

Also, predict the value of the output resistance seen by the load, which in this case is $R_o = (1/g_m)//R_s$.

M13: With power off, assemble the circuit of Fig. 16 (don't connect R_L yet.) Keep leads short, and mount the 0.1-µF power-supply bypass capacitors in *close proximity* to your IC. Next, apply power, adjust the waveform generator so that v_i is a 10-kHz *sine-wave* with 0-V DC and a *peak-to-peak* amplitude of 2 V, and measure the gain $A_v = v_o/v_i$. How does it compare with the predicted value of Step C12? What happens if you connect the load R_L to your circuit? Is loading noticeable? Explain!

CMS14: Simulate the circuit of Fig. 16 via PSpice (DC as well as AC analysis), compare with predicted and measured values, and account for any possible discrepancies.

CMOS Amplifier:

A widely used MOSFET amplifier configuration is the *complementary MOS* (CMOS) cell of Fig. 17, consisting of an *n*MOSFET and a *p*MOSFET with the *gates* tied together to form the *input* node, and the *drains* tied together to form the *output* node. Biasing is accomplished by a plain feedback resistance R_F , which can be made relatively large as the gate terminals draw zero current. Using the MOSFETs' large signal models, one can prove that with this resistor in place, the output and input nodes will automatically bias at the common DC value $V_O = V_I = V_{BIAS}$, where

$$V_{BIAS} = \frac{V_{in} + \sqrt{k_p / k_n} (V_{DD} - |V_{ip}|)}{1 + \sqrt{k_p / k_n}}$$
(21)

Moreover, using the small-signal models, one can prove that the ac gain around this bias point is

$$A_{v} = \frac{v_{o}}{v_{i}} = \frac{-(g_{mn} + g_{mp} - 1/R_{F}) \times (r_{on} //r_{op})}{1 + (r_{on} //r_{op})/R_{F}}$$
(22)

where g_{mn} , g_{mp} , r_{on} , and r_{op} are calculated via Eq. (14). To find I_D , we use Eq. (9) with $v_{GS} = V_I$.

As you assemble (with power off!) the circuit of Fig. 17, keep leads short and bypass the power supply with the usual 0.1- μ F capacitor. Anticipating a relatively high gain, we need to keep the input v_i suitably small, so we interpose the voltage divider R_1 and R_2 between the input source and the amplifier to suitably scale down the source. With the resistance values shown, we have $v_i \cong v_s/100$.

C15: Using the MOSFET parameter values found experimentally, predict the values of V_{BIAS} , I_D , and A_v for the CMOS amplifier of Fig. 17.

M16: Apply power to the circuit of Fig. 17, but without connecting the waveform generator yet, and use the DVM to measure the output DC voltage V_o . Next, connect the waveform generator, and set it for a 10-kHz, 0-V DC *sine-wave*. While monitoring v_s with Ch. 1 and v_o with Ch. 2 of the oscilloscope, adjust the waveform generator until that v_o has a *peak-to-peak* amplitude of 2 V. Measure the corresponding *peak-to-peak* amplitude of v_s , find $v_i = v_s/100$, and finally determine the voltage gain $A_v = v_o/v_i$ of your amplifier.

S17: Simulate the circuit of Step M16 via PSpice (DC as well as AC analysis). For a realistic simulation you need to create a PSpice model both for your *n*MOSFET and *p*MOSFET samples, using the above-measured values of k_n , V_{tn} , and λ_n , as well as k_p , V_{tp} , and λ_p .

C18: Compare the *predicted* values of Step C15 with the *measured* ones of Step M16 and the *simulated* ones of Step S17. Account for possible discrepancies.